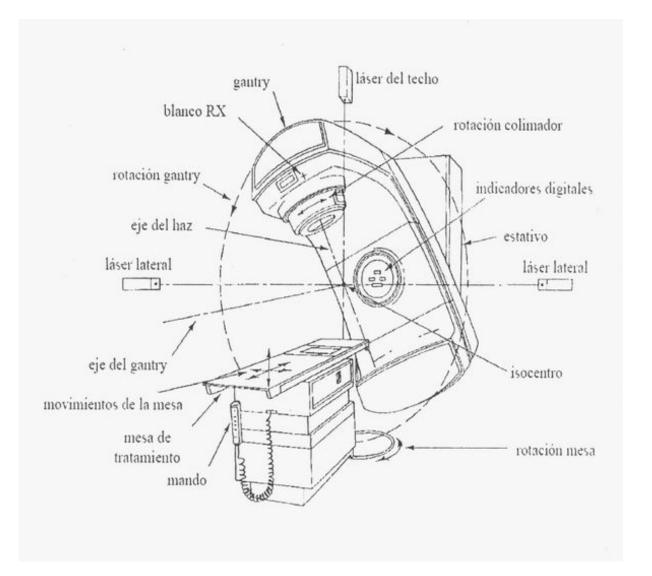


BLOQUE 2 EQUIPOS DE TELETERAPIA

ACELERADOR LINEAL



TEMA 4 – ACELERADOR LINEAL DE ELECTRONES

INDICE

- **4.1** ACELERADORES LINEALES
- **4.2** COMPONENTES PRINCIPALES
- **4.3** TIPOS DE ACELERADORES LINEALES
- 4.4 ESQUEMA GENERAL DE UN ACELERADOR LINEAL
- 4.5 PARTES PRINCIPALES DEL MISMO Y SU FUNCIONAMIENTO
- 4.6 MODIFICADORES DEL HAZ
- 4.7 -BOLUS Y OTROS COMPENSADORES.
- 4.8 SISTEMAS DE COLIMACION Y CONFORMACION DEL HAZ

ACELERADORES LINEALES

- ☐ Aceleradores uso médico : Aceleradores Lineales de Electrones (ALE) O LINAC (siglas en inglés).
- □Diseño primer acelerador —Rolf Wideroe en 1928.
- □ Aceleran partículas cargadas en línea recta mediante campos magnéticos y eléctricos.
- Destruyen células cancerosas sin afectar los tejidos circundantes normales.
- □Solo se producen radiaciones cuando el equipo es conectado y se ordena producirlas.

Los ALE generan:

- ✓ <u>ELECTRONES</u>: son capaces de acelerarlos a velocidades cercanas a la de la luz.
- ✓ RAYOS X DE ALTA ENERGIA: los electrones acelerados inciden sobre un blanco determinado.

Los ALE pueden producir tanto haces de electrones como haces de rayos X para uso terapéutico

COMPONENTES PRINCIPALES

COMPONENTES PRINCIPALES DE UN ACELERADOR LINEAL DE ELECTRONES

En la ESTRUCTURA GENERAL de un acelerador podemos diferenciar:

- o <u>Parte externa</u>: Elementos que hacen posible el funcionamiento tanto de la radiación ionizante que debe producir como de los movimientos.
- o <u>Estructura interna</u>: Formada por una serie de componentes responsables de este funcionamiento.

ESTRUCTURA ACELERADOR LINEAL

- COMPONENTES EXTERNOS
 - Estativo
 - Brazo o Gantry
 - Modulador
 - Mesa de tratamiento
 - Mesa de control
 - Interlocks o enclavamientos de seguridad

COMPONENTES INTERNOS

- Generador de radiofrecuencia
- Cañón de electrones
- Guía aceleradora
- Deflector magnético
- •Blanco o folias dispersoras
- Cono aplanador del haz
- Sistema de cámaras monitoras
- Colimadores
- Componentes movimientos mecánicos

COMPONENTES EXTERNOS ALE

ESTATIVO

- Parte fija del equipo , soporta el brazo o gantry y contiene los sistemas mecánicos y auxiliares para su funcionamiento.

BRAZO O GANTRY

🗗 En algunas unidades , este es:

Sistema

Vision

Portal

<u>Sistema de adquisición de imágenes portal</u> o <u>Sistema de visión portal</u>, también denominado <u>EPID.</u>

BRAZO O GANTRY

-El brazo o gantry contiene : mecanismos para acelerar el haz y administrar el tratamiento por medio de dispositivos de conformación del haz.

<u>CABEZAL</u>

Extremo superior del brazo del acelerador.

• Contiene: Fuente de radiación

<u>Sistemas de colimación</u>

Sistema de iluminación del campo

■ Compuesto por: Blanco de rayos X

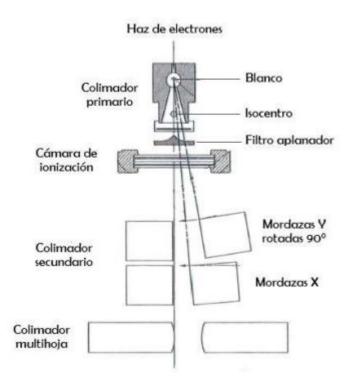
Cono ecualizador para fotones

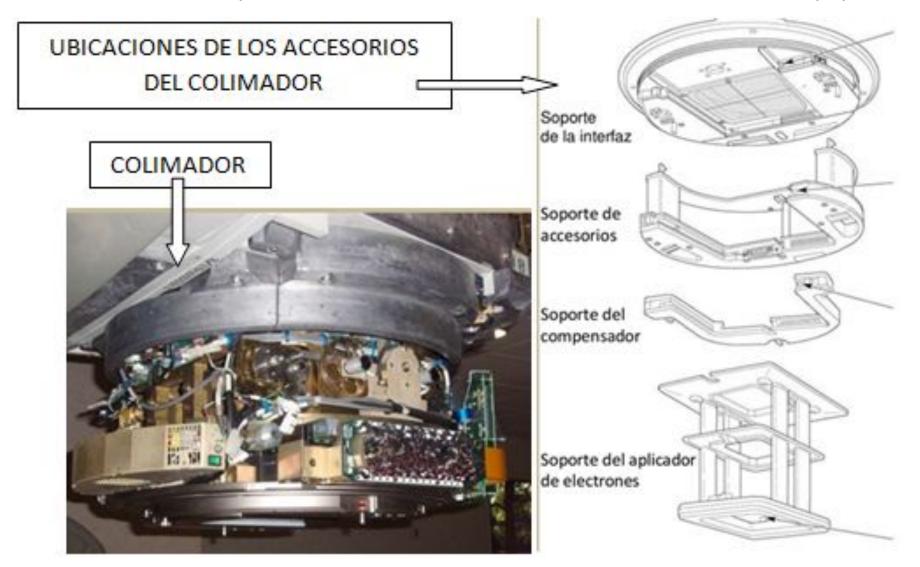
<u>Filtros homogeneizadores para electrones</u>

Cámaras de ionización

<u>Colimadores</u>

Primarios


Secundarios


Brazo o Gantry

CABEZAL

- -Electrones perpendiculares al suelo, se rompe el vacío y se dirigen hacia el paciente.
- -También es la zona donde se producen los haces de fotones.

<u>Colimador</u>: Componente interno del ALE , ubicado en el cabezal del equipo.

MODULADOR

- ☐ Localizado en el interior de la sala de tratamiento.
- ☐ Contiene los elementos que distribuyen y controlan la potencia eléctrica.

MODULADOR

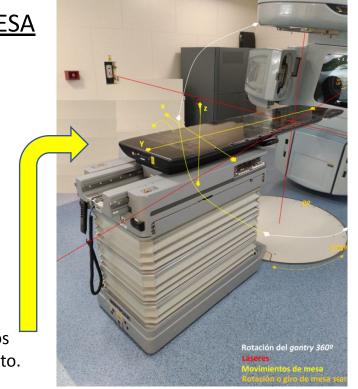
Contiene los componentes que transforman la corriente alterna en alto voltaje y lo distribuyen a los sistemas del acelerador.

Contiene los controles de alimentación principales, los disyuntores de circuitos del sistema y otros controles e indicadores.

MESA DE TRATAMIENTO

Lugar donde se posiciona al paciente para realizar el tratamiento.

• Consta de :

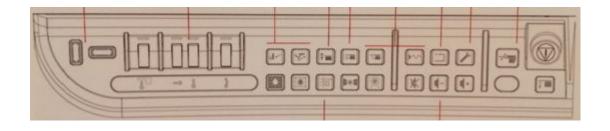

Tablero □ parte superior de la mesa donde se posiciona al paciente.

Pedestal □ parte que soporta el tablero y que contiene los sistemas mecánicos.

MOVIMIENTOS DE LA MESA

- Vertical
- Longitudinal
- •Transversal o Lateral
- Angular o rotación isocéntrica

En la imagen y en color amarillo se muestran los diferentes movimientos de la mesa de tratamiento.


Mesa de tratamiento

Dispone de :

Mando o telemando □ Mismas funciones □ Paneles laterales

- ✓ movimientos de la mesa.
- ✓ giro colimador y gantry.
 - ✓ campo luminoso
 - ✓ Láseres
 - ✓ Mordazas

MESA DE CONTROL

- -Situada en la sala de control.
- Consta de :
 - mandos de control
 - cámaras vigilancia
 - micrófono y altavoz

*El micrófono ,el altavoz y el control del sistema de imagen \square integrado en el equipo o conectado a parte con la sala.

Ordenador – Consta de:

Uno o varios monitores: Estado de operación de unidad

Dos teclados: Convencional y teclado de la consola de control.

Modos de operación

- -Modo clínico
- -Modo físico

Componentes externos ALE

INTERLOCKS O ENCLAVAMIENTOS DE SEGURIDAD

Componentes externos ALE

Sistemas de seguridad del equipo, aparecen en el monitor de la consola a modo de aviso.

Ejemplos;

DOOR → Puerta abierta

PNDT → Telemando no está colocado correctamente.

Modo servicio: Acceso a los interlocks y modificaciones parámetros equipo.

TECLADO DE LA CONSOLA

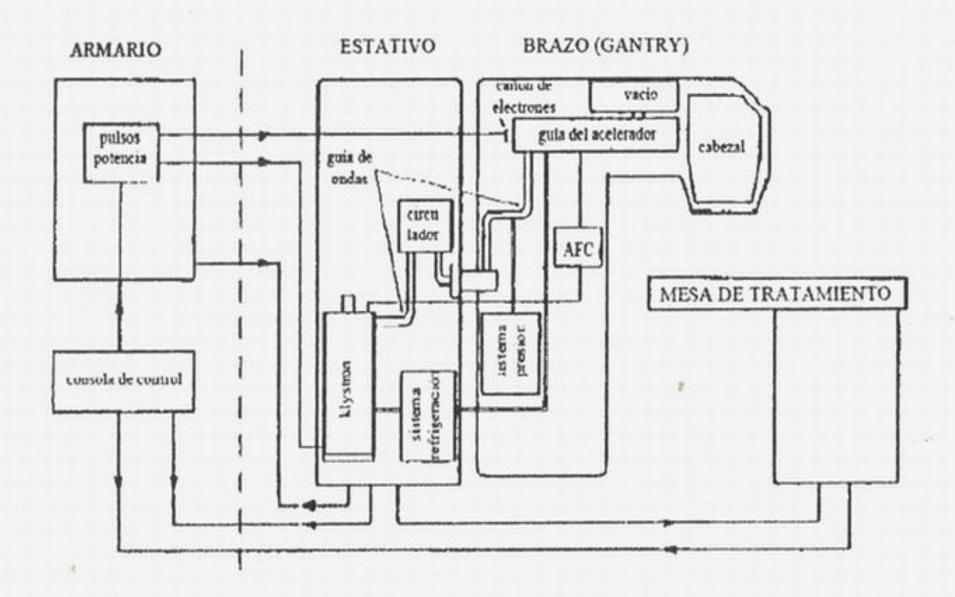
Panel donde están los mandos de control del equipo.

Doble mecanismo de seguridad: la llave y botón de parada de emergencia.

Parámetros de tratamiento que controla:

- ✓ Selección modo fotones o modo electrones.
- ✓ Selección energía.
- ✓ Accesorios (cuñas, aplicadores de electrones...).
- ✔ Tamaño de campo.
- ✓ Giro de colimador, gantry y camilla.
- ✓ Unidades Monitor (UM).
- ✓ Tasa de dosis.

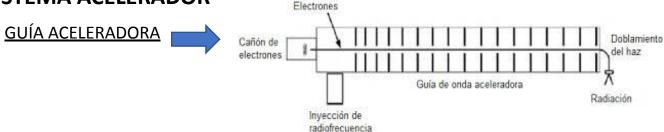
COMPONENTES INTERNOS DE UN ALE


- Generador de radiofrecuencia
- Cañón de electrones
- Guía aceleradora
- Deflector magnético
- Blanco o folias dispersoras
- Cono aplanador del haz
- Sistema de cámaras monitoras
- Colimadores
- Componentes para los movimientos mecánicos

Cañón de slactronas Guía de anda aceleradora Blanco de R.X Isacentro Epe gontry

Generador (brazo) tratamiento tratamiento

^{*}Definiremos estos componentes en el funcionamiento del acelerador lineal.



INTERNOS

SISTEMA GENERADOR

SISTEMA ACELERADOR

SISTEMA DE DEFLEXION → *Sistema magnético de deflexión del haz a 90 y a 270.*

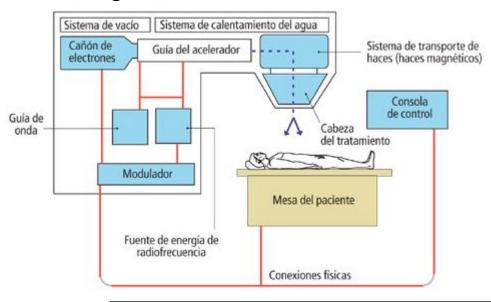
SISTEMA DE CONFORMACION DEL HAZ → Lámina difusora y colimadores.

SISTEMA DE MANTENIMIENTO

- ① Sistema de vacío.
- ② Sistema de refrigeración.

SISTEMA DE MOVIMIENTOS MECANICOS → Control manual colgante o telemando.

4.3 - TIPOS DE ACELERADORES LINEALES


- **ALE monoenergéticos**

 FOTONES (entre 4 MV y 6 MV)
- **ALE multienergéticos**

 FOTONES Y ELECTRONES.
 - Haces de fotones baja energía (4MV 6MV) y alta energía (18MV 20 MV)
- Haces de electrones de diferentes energías.

4.4 - ESQUEMA GENERAL DE UN ACELERADOR LINEAL

Acelerador lineal o LINAC es un dispositivo de grandes dimensiones que suministra a distancia rayos X de alta energía.

4.5 – FUNCIONAIVIIEN IO ACELERADOR LINEAL

PARTES PRINCIPALES Y FUNCIONAMIENTO

COMPONENTES PRINCIPALES: modulador, cañón de electrones, fuente de poder de radiofrecuencia y guía del acelerador.

FUNCIONAMIENTO BÁSICO DE UN ACELERADOR LINEAL

- a) Los electrones producidos se introducen en la SECCION ACELERADORA
- b) Las ondas son generadas --- MODULADOR y amplificadas --- magnetrón o klystron
- c) Las ondas son inyectadas a través de la guía de ondas.
- d) Los electrones y las ondas se inyectan en forma de pulsos de forma simultánea.

SECCIÓN GENERADORA

Cañón de electrones

forma cerrada ya que dentro 🖙 Alto grado de vacío

Emite electrones y los inyecta en la sección aceleradora.

Modulador:

Suministra simultáneamente pulsos de tensión a cañón de electrones y klystron.

- La fuente de alimentación proporciona corriente continua al modulador.
- o El circulador aísla el klystron de las microondas.

Generador de potencia (magnetrón o klystron): Fuente de potencia de alta frecuencia.

Magnetrón: Transforma energía eléctrica en electromagnética en forma de microonda

Klystron : Válvula vacío de electrones.

Magnetrón

- Usado en LINAC de baja s energías (4-8 MeV) Pico 3MW.
- Menor voltaje.
- Menor tamaño.

Klystron

- Usado en LINAC de alta energías (10-25 MeV) Pico 7MW.
- Alto voltaje.
- Mayor tamaño.

SECCIÓN ACELERADORA

Forma de tubo, en su interior hay una serie de cavidades a las que se ha realizado el vacío.

- ☐ Se inyectan ondas provenientes de la guía de ondas y electrones provenientes del cañón.
- □Dos modelos de ondas:

PROGRESIVAS

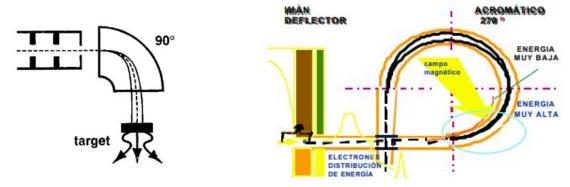
ESTACIONARIAS

Los electrones adquieren la energía de las ondas :

- -En la 1º parte de la sección los electrones adquieren la velocidad de la luz.
- Las energías alcanzadas en los ALE varían entre 6 y 24 MeV.
- El diámetro del haz de electrones al final de la sección aceleradora es del orden de 3mm.

Para agrupar a los electrones durante su trayectoria — Evitar cualquier desviación del haz.

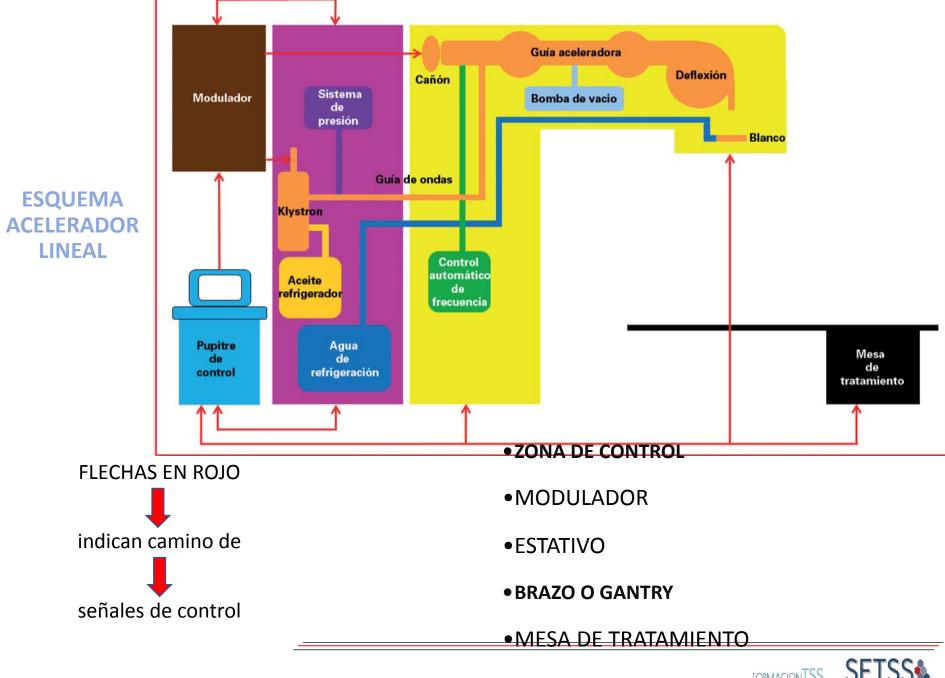
Extremo de la guía de ondas



se compensa por dos juegos de espiras centradas

SECCIÓN DEFLECTORA

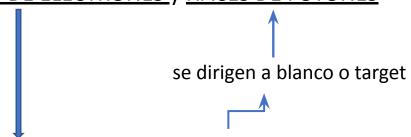
- Los ALE tienen unas <u>bobinas magnéticas</u> que permiten desviar la trayectoria de los electrones.
- Los electrones pueden ser desviados 90 ° o 270 °.
- Este conjunto SISTEMA MAGNÉTICO DE DEFLEXIÓN DEL HAZ.
 - o <u>SISTEMA DE DEFLEXION DEL HAZ A 90</u> o □ emplea un imán muy intenso.
 - o <u>SISTEMA DE DEFLEXION DEL HAZ A 270</u> o ☐ Corrige la energía y variaciones del haz.


SISTEMA DE DEFLEXION EN ACELERADORES MULTIENERGETICOS

- -Sección aceleradora ALE multienergéticos →2 m
- Paciente paralelo al suelo desviar la trayectoria de los electrones 90 °

SISTEMA DE DEFLEXION EN ACELERADORES MONOENERGETICOS

- cañón de electrones perpendicular al suelo - NO poseen bobinas de deflexión



Funcionamiento CABEZAL

En el CABEZAL se producen <u>HACES DE ELECTRONES</u> y <u>HACES DE FOTONES</u>

Con los electrones perpendiculares al suelo, se rompe el vacío y se dirigen \rightarrow Paciente.

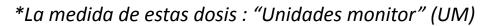
<u>Compuesto por</u>: Elementos mediante los que se obtienen haces de fotones y electrones.

- ☐ Blanco de rayos X.
- Cono ecualizador para fotones.
- ☐ Filtros homogeneizadores para electrones.
- Cámaras de ionización.
- Colimadores primarios y secundarios.

HACES DE FOTONES

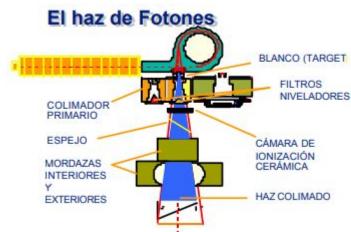
ELEMENTOS HOMOGENEIZACION DEL HAZ

1º <u>Cono o filtro nivelador</u>: a la salida del blanco.


2º <u>Cámaras monitoras</u>: Son 2 cámaras de ionización.

Controlan → <u>Dosis</u>

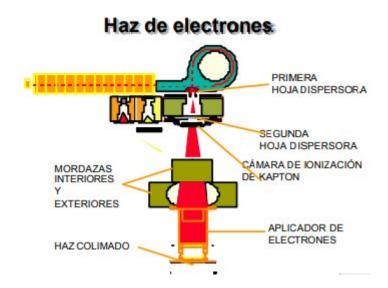
Tasa de dosis


Homogeneidad

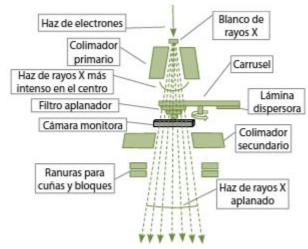
simetría del haz

3º Sistema de colimación: Colimador primario y Colimador secundario.

Actualmente, los sistemas de colimación secundaria cuenta con un sistema denominado MULTILÁMINAS Éste puede sustituir el colimador secundario o estar añadido como colimador terciario.



HACES DE ELECTRONES


El camino de los haces de electrones después de la salida del vacío...

- 1º Se dispersan en unas **hojas dispersoras** que permiten que los haces se extiendan y sean uniformes.
- 2º Penetran en las cámaras monitoras
- 3º APLICADOR colimador terciario : filtra los electrones dispersos .
 - a 10, 5 o 0 cm de la piel.

ESQUEMA COMPONENTES EXISTENTES EN EL CABEZAL DE UN ACELERADOR PARA PRODUCIR RX

RX de frenado \longrightarrow Se producen cuando los electrones chocan con el material que constituye el blanco , tras él \longrightarrow colimador primario

Por último, otros dos elementos del acelerador son:

SISTEMA DE REFRIGERACIÓN

Función: Refrigera la fuente de potencia de alta frecuencia, la guía de ondas y el blanco de rayos X.

CONTROL AUTOMÁTICO DE FRECUENCIA

Función: mantener constante la frecuencia de las microondas.

4.7 - MODIFICADORES DEL HAZ

MODIFICADOR DE HAZ DE RADIACION EXTERNA

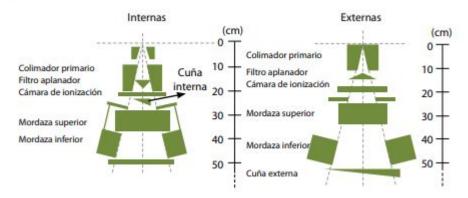
Objetivo: variar la distribución de dosis en el volumen irradiado.

Cuña — Crea un gradiente de dosis en zona irradiada.

Se definen por 3 parámetros; Factor de transmisión, ángulo de cuña y el campo máximo de utilización.

TIPOS DE CUÑAS

CUÑAS FISICAS
CUÑAS MOTORIZADAS
CUÑAS DINAMICAS (O VIRTUALES)

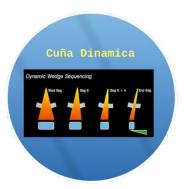


TIPOS DE CUÑAS

CUÑAS FISICAS

(15, 30, 45 y 60 grados) Unidades de cobalto

Motorizadas Internas (universales) y Externas



CUÑAS MOTORIZADAS

Cuña motorizada en una dirección del campo de radiación y una dinámica en la otra.

CUÑAS DINAMICAS (O VIRTUALES)

Surgieron al aparecer ALE con las mandíbulas que forman el colimador.

4.7 - BOLUS Y OTROS COMPENSADORES

COMPENSADORES Mismo efecto que el bolus, pero con efecto de protección piel. A unos 15 a 20 cm de la superficie a tratar.

- Consiguen distribuciones dosis no uniformes en el tumor.
- Fabricados comúnmente de aleaciones de Pb, como el Cerrobend.

<u>Compensadores tipo Ellis</u>: disminuir la dosis en la piel, a 15cm. Son bloques de aluminio o cobre .

BOLUS

- Elemento modificador del haz de radiación.
- Material de composición orgánica equivalente a la densidad del agua (cera/parafina, agua o siliconas).

4.8 - SISTEMAS DE COLIMACION Y CONFORMACION DEL HAZ

4.8.1- SISTEMA DE COLIMACION DEL HAZ

Función: Orientar el haz, delimitar y conformar campo de tratamiento.

Colimadores: Estructuras para detener o atenuar la radiación.

Colimador primario

Colimador secundario

Moldean el haz de radiación

Colimador multiláminas (MLC)

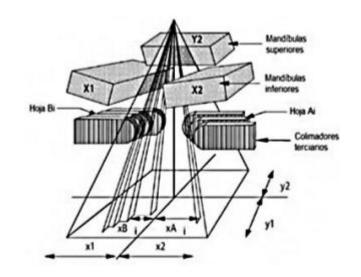
Otros dispositivos <u>blanco de rayos X, filtro aplanador</u> y <u>lámina dispersora</u>.

COLIMADORES EN UNIDADES DE COBALTO: Bloques de Pb - Ajustables.

<u>COLIMADORES EN ACELERADORES LINEALES</u>: MLC

COLIMADORES

Colimador primario


Forma cónica.

Función: evitar la fuga de radiación dispersa.

Colimador secundario

Mandíbulas (2 pares de bloques).

<u>Función</u>: Disminuir la Penumbra.

Colimador multilaminas (MLC)

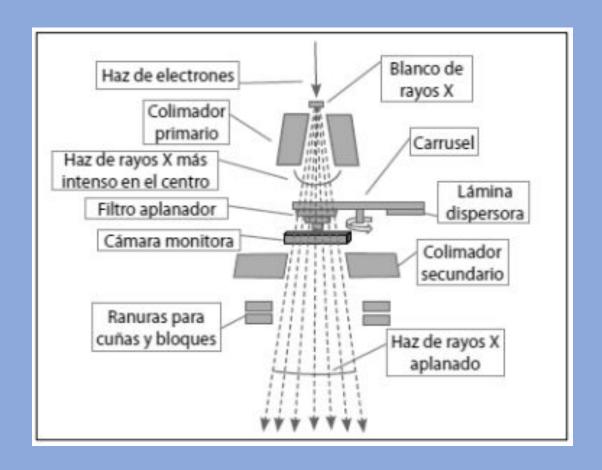
Entre 20 y 60 pares de laminas

Función: Conformar campos y modular la intensidad del haz.

COLIMADOR MULTILÁMINAS (MLC)

- Moldea los haces de radiación.
- Láminas motorizadas independientes.
- Aleaciones de Tungsteno(alta densidad)
- Acoplado al cabezal.

VENTAJAS


-Conformación de campos irregulares.

INCONVENIENTES

- -Alto coste y mantenimiento.
- Fallo de un servomotor puede hacer que el ALE no funcione.

SISTEMA DE COLIMACION

4.8.2 - SISTEMA DE CONFORMACION DEL HAZ

BLOQUES

La conformación del haz se obtiene con bloques de Pb o tungsteno.

<u>Estándar</u>: 5-8 cm. Lados paralelos, provocan Penumbra.

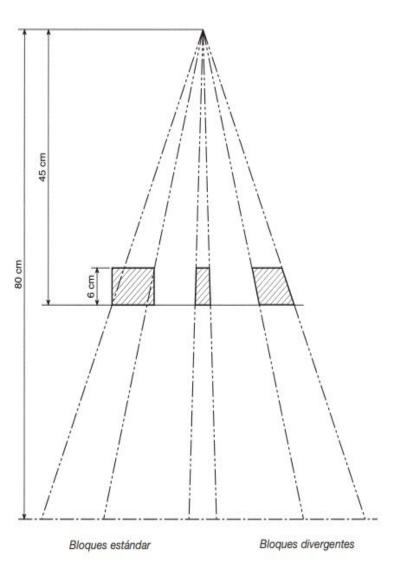
*estándar divergentes: caras laterales convergentes.

BLOQUES

Personalizados: Bloques de aleaciones de BPF (bajo punto fusión);

Lipowitz (*Cerrobend*).

Los bloques se vuelven a fundir tras su uso


contiene

Bismuto

Plomo

Estaño

Cadmio

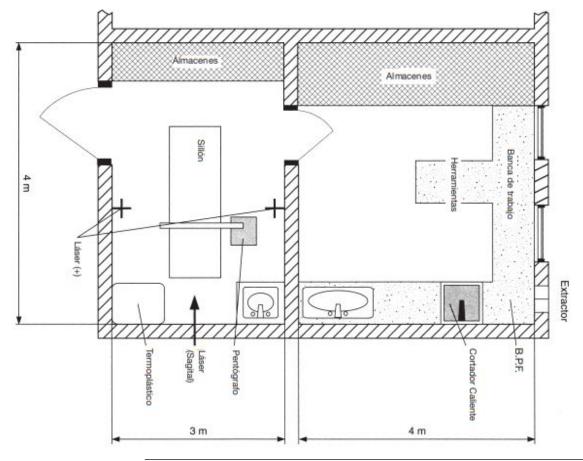
Montaje de los bloques

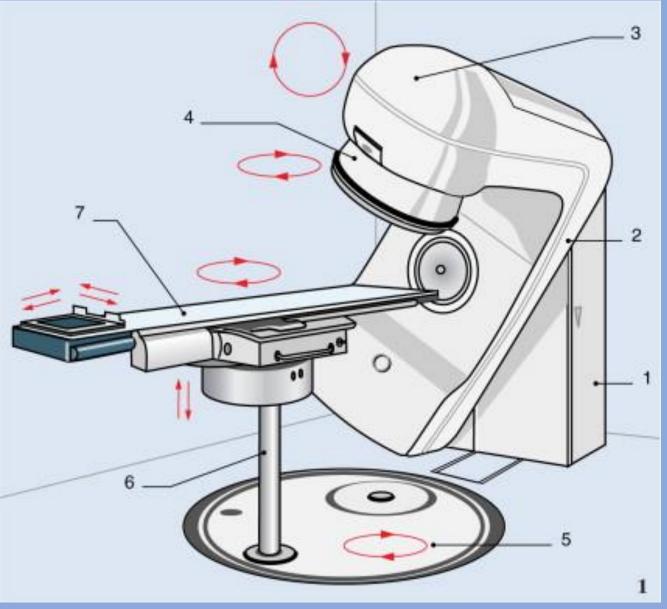
- ☐ Los *bloques personalizados* → Bandeja de montaje. (Siempre con sujeción)
- ☐ El grosor disminuye a medida que aumenta la energía de fotones.

GROSOR DE BLOQUES REQUERIDO PARA UNA TRANSMISIÓN DEL 6% A TRAVÉS DEL CERROBEND						
Energía (MeV)	Cobalto 60	Acelerador lineal				
		5.5	6	15	18	25
Grosor en	55	76	70	66	65	62

LÁMINA DE PLOMO CONTORNEADA

Para rayos X de ortovoltaje, el contorno del bloque → capas sucesivas de 2 a 3 mm de


plomo enrollado.



EL TALLER DE MOLDES

FUNCIÓN DEL TALLER \rightarrow Las técnicas del taller son necesarias para el mayor beneficio posible del tratamiento con teleterapia.

Ubicado dentro del servicio de oncología radioterápica.

ACELERADOR LINEAL

1 – Estativo

2 –

3 – Brazo o Gantry

4 – Cabezal

5 – Rotación mesa

6 – Elevador mesa

7 – Mesa de tratamiento

